

Introducing our Guest Speaker from Forrester

Shain Singh
Principal Security Architect @ F5

- Project co-lead MLTOP10 @ OWASP
- Zero Trust and DevSecOps Working Groups @ Cloud Security Alliance
- Technical Reviewer DevSecOps in Action (upcoming book)

Sandy Carielli

Principal Analyst @ Forrester

Purchasing Power shift to Developers

Security and Speed are still mutually exclusive

Of developers admit to skipping security due to delivery timeframes **70%**

Of developers admit to pushing code with known vulnerabilities

96% Of cloud breaches are self-inflicted

How can we get better at this?

EMPHASIS HAS BEEN ON EFFICACY FOR INDIVIDUAL APPLICATIONS OVER FULL COVERAGE OF ALL DEPLOYMENTS

Identification of the degree of the implementation

DevSecOps Maturity Model (DSOMM) Level 1

Basic understanding of security practices

Recommendations:

- Never fail a build pipeline security scans will have false positives
- Investigate static and dynamic tools for the DevOps pipeline
- Build expertise with tools and analyse results
- Collaborate with development teams to resolve issues

DevSecOps Maturity Model (DSOMM) Level 2

Adoption of basic security practices

Recommendations:

- Investigate tweaking tools from their default settings for tuning
- Storing results from tools in a consolidated environment
- Starting a security champion program

DevSecOps Maturity Model (DSOMM) Level 3

High adoption of security practices

DevSecOps Maturity Model (DSOMM) Level 4

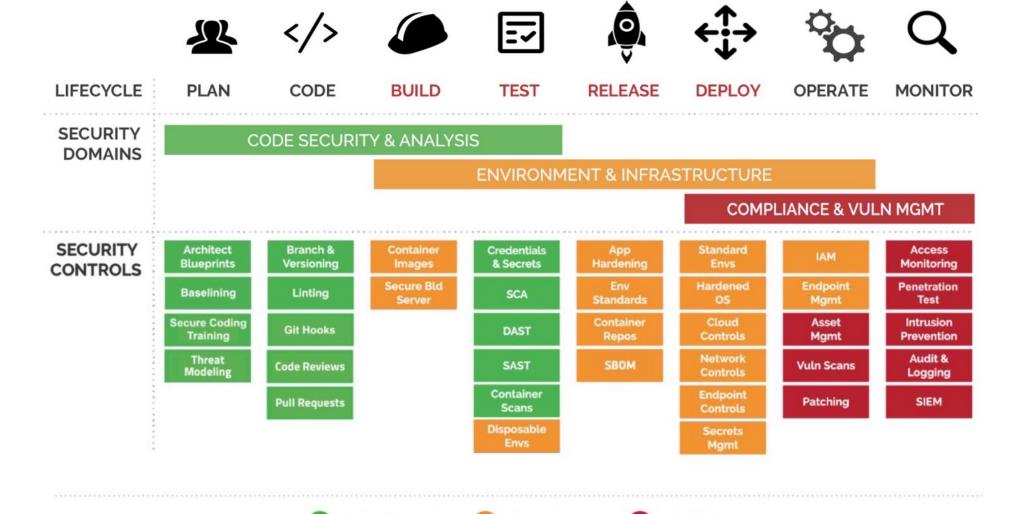
Advanced deployment of security practices at scale

Compliance can be continuous and automated

Cloud Controls Matrix
Security Guidance For Critical Areas of Focus in Cloud Computing

Benefits, Risks and Recommendations For Information Security

Cybersecurity Framework



CIS Benchmarks

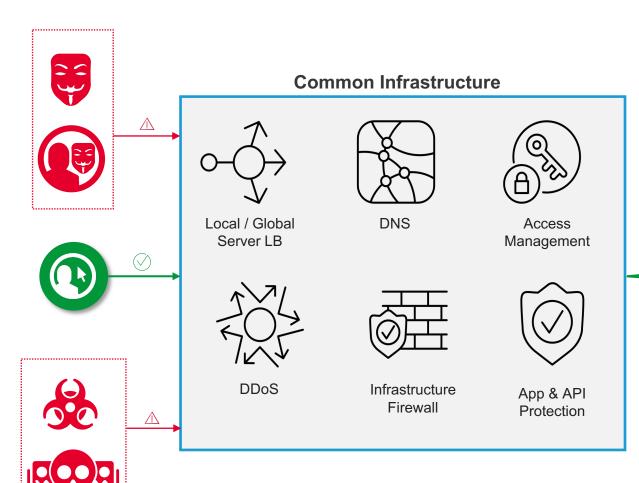
Secure Cloud Computing Architecture

Separating tasks into domains of ownership

Operations

InfoSec

Developers


Shift Everywhere Gains Momentum

Runtime environment for applications

Ingress (with API Gateway)

- Layer 7 routing for traffic entry point coming into Kubernetes
- Built for HTTP traffic. TCP/UDP for non-HTTP traffic
- May include API Gateway implementation

Shifting focus to post-deployment

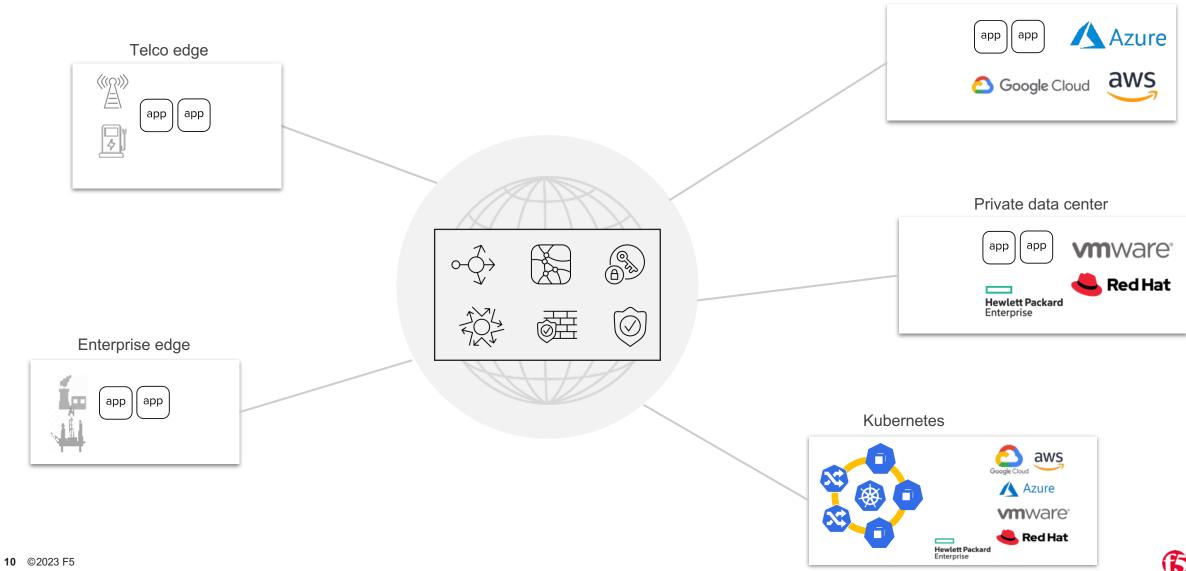
Pods

Runs app in a container / CNF

Service Mesh

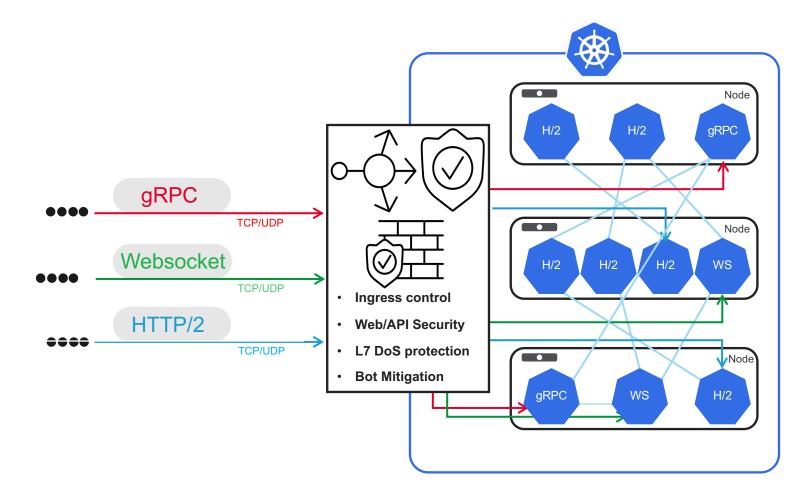
- Open Source Service Mesh implementation (Istio)
- Injects Sidecar to every pod
- Enforces routing, security with mTLS, etc.
- Provides traceability of pod communication

Cloud Microservices PaaS


Kubernetes

Cluster

- On-prem private cloud (e.g: VMware)
- Public cloud (e.g: AWS, Azure, GCP)



App Services at a macro-environment level

Public cloud

App Services at a micro-environment level

Security Controls:

- DoS protection for:
 - HTTP
 - gRPC
 - Websocket
- Web application and API security
- Bot Mitigation
- OpenAPI Spec (Swagger) enforcement
- Attack Signature/Schema Validation inside:
 - HTTP
 - XML
 - JSON
 - gRPC
 - Websockets
 - GraphQL
- TCP SYN flood protection
- AuthN/AuthZ

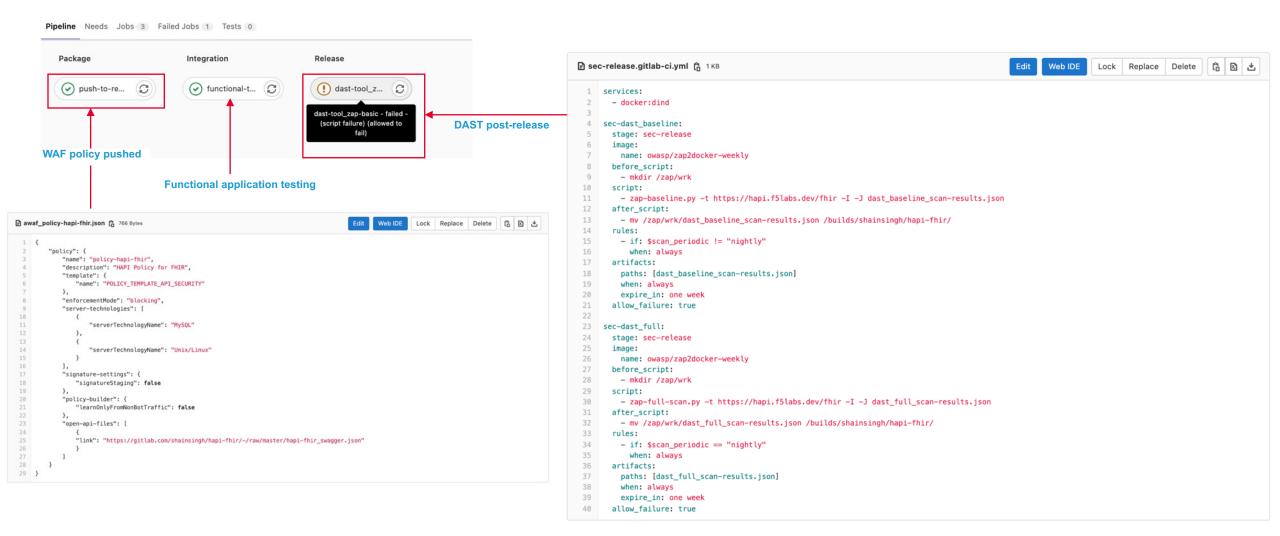
Breaches increase Appsec investment

Security controls that are now mainstream

"Should I create ACLs for non-internet facing apps"

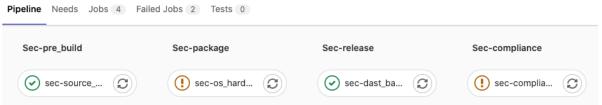
- Docker/Kubernetes service definitions
- Public cloud network ACLs (e.g. AWS security groups)

"Do I need encrypted data at rest and in transit for internal apps"


- Secrets management (e.g Hashicorp Vault)
- mTLS via service mesh
- LetsEncrypt Certbot for TLS certificates

Can we not implement web application protection if we make deployment simple?

- WAF and L7 DoS configuration via Kubernetes manifests, deployed via Continuous Delivery tooling
- Functional testing of application post WAF deployment removes potential for false positives


Example – Post deployment WAF effectiveness

Example – Post deployment compliance


```
sec-package.gitlab-ci.yml 🔓 760 Bytes
                                                                                                          Web IDE
 1 services:
      - docker:dind
  4 sec-os_hardening:
      stage: sec-package
       image: ansible/galaxy
       before_script:
        - mkdir -p ~/.ssh
        - echo "$DEPLOYMENT_SERVER_SSH_PRIVKEY" | tr -d '\r' > ~/.ssh/id_rsa
        - chmod 600 ~/.ssh/id_rsa
        - eval "$(ssh-agent -s)"
         - ssh-add ~/.ssh/id rsa
        - echo -e "Host *\n\tStrictHostKeyChecking no\n\n" > ~/.ssh/config
        - echo "[prod]" >> inventory.ini
        - echo "$DEPLOYMENT_SERVER" >> inventory.ini
        - export ANSIBLE_STDOUT_CALLBACK=json
        - ansible-galaxy install dev-sec.os-hardening
        - ansible-playbook -i inventory.ini ansible-hardening.yml > sec-os_hardening-results.json
         paths: [sec-os_hardening-results.json]
         when: always
         expire_in: one week
       allow_failure: true
```

```
sec-compliance.gitlab-ci.yml 🔓 694 Bytes
                                                                                                                                            倍 🗈 🕹
                                                                                                                    Lock Replace Delete
     services:
       docker:dind
     sec-compliance:
       stage: sec-compliance
         name: chef/inspec
       only:
       environment: production
       before_script:
         - echo "$DEPLOYMENT SERVER SSH PRIVKEY" | tr -d '\r' > ~/.ssh/id rsa
14
         - chmod 600 ~/.ssh/id_rsa
         - eval "$(ssh-agent -s)"
16
         ssh-add ~/.ssh/id_rsa
         - echo -e "Host *\n\tStrictHostKeyChecking no\n\n" > ~/.ssh/config
18
19
         - inspec exec https://github.com/dev-sec/linux-baseline -t ssh://root@$DEPLOYMENT_SERVER -i /id_rsa --chef-license accept --reporter json:/opt/sec-
20
         paths: [sec-compliance-results.json]
         when: always
       allow_failure: true
```


Key Takeaways

Start incorporating runtime environment controls into pipelines for feedback loops

Start small, then increment - DSOMM Level 1

Integrate into DevOps processes as opposed to just installing security tooling

Goal is to have security across all apps, everywhere

A force for a better digital world