
Effective DevSecOps -
How to Integrate Security
into Pipelines

Shain Singh

Cloud/5G Security Architect – APCJ Lead

ss@f5.com

A Journey not a Destination

| ©2021 F53

Who am I?

Shain Singh
Cloud/5G Security Architect @F5

email: ss@f5.com

Social

Professional Memberships

https://linkedin.com/in/shsingh

shsingh@ieee.org

https://twitter.com/shainsingh

https://github.com/shsingh

https://shain.io

mailto:ss@f5.com
https://linkedin.com/in/shsingh
mailto:shsingh@ieee.org
https://twitter.com/shainsingh
https://github.com/shsingh
https://shain.io/

| ©2021 F54

Why do I think about integrating security into pipelines?
Make Security Great Again™

• Blue Teaming should be as fun as Red Teaming

• Create cultural shift in organizations by embracing DevOps principles
− Security should move from a “NO by default” to a “YES with caveats”

− Meeting developers halfway encourages them to do the same

• Leverage toolsets and methodologies that are becoming common-place for application and infrastructure
deployment

Continuous Learning™

• I am a curious security practitioner - constantly learning how these new technologies can help with raising
the bar by speaking to customers and also other practitioners

| ©2021 F55

What exactly is DevSecOps?

| ©2021 F56

Why have we not made much progress?

https://owasp.org/www-project-devsecops-maturity-model/

DevSecOps Maturity Model (DSOMM) Level 1
Basic understanding of security practices

Recommendations:
• Never fail a build pipeline – security scans will have false positives
• Investigate static and dynamic tools for the DevOps pipeline
• Build expertise with tools and analyse results
• Collaborate with development teams to resolve issues

DevSecOps Maturity Model (DSOMM) Level 2
Adoption of basic security practices

Recommendations:
• Investigate tweaking tools from their default settings for tuning
• Storing results from tools in a consolidated environment
• Starting a security champion program

DevSecOps Maturity Model (DSOMM) Level 3
High adoption of security practices

DevSecOps Maturity Model (DSOMM) Level 4
Advanced deployment of security practices at scale

TOO MUCH TOO SOON CAN INCREASE FRICTION BETWEEN TEAMS AND OVERHEAD WITH SECURITY SCAN RESULTS

https://owasp.org/www-project-devsecops-maturity-model/

| ©2021 F57

Industry standards define a good set of baselines to start

Cloud Controls Matrix
Security Guidance For Critical Areas of Focus in Cloud Computing Benefits, Risks and Recommendations For Information Security

CIS Benchmarks

Secure Cloud Computing Architecture

Cybersecurity Framework

https://cloudsecurityalliance.org/artifacts/csa-ccm-v-3-0-1-11-12-2018-FINAL/
https://cloudsecurityalliance.org/artifacts/security-guidance-v4/
https://www.enisa.europa.eu/publications/cloud-computing-risk-assessment/at_download/fullReport
https://www.cisecurity.org/cis-benchmarks/
https://www.disa.mil/-/media/Files/DISA/News/Events/Symposium-2019/1-Del-RosarioSecure-Cloud-Computing-Architecture-SCCA-Program-Overviewapproved-Final.ashx
https://www.nist.gov/cyberframework

Application Security consistency

| ©2021 F59

CONSISTENT POLICY ACROSS DIFFERENT DATA-PLANES AND DEPLOYMENT SCENARIOS
Declarative language for describing application security

F5 Advanced WAF
Traditional applications

OWASP Top 10
SSL/TLS Inspection

Scripting
Threat Campaigns

Proactive Bot Defense
App-Layer DoS Protection

NGINX App Protect
Modern applications

OWASP Top 10
SSL/TLS Inspection

Scripting
Threat Campaigns

Proactive Bot Defense
App-Layer DoS Protection

Same Declarative Policy

| ©2021 F510

PER-APPLICATION AND PER-SCENARIO BASED SECURITY POLICY
Flexibility of policy depending on deployment scenarios

API Gateway
Security Controls

WAF signatures disabled
Threat Campaigns enabled

Bot Mitigation enabled
Open API schema enforcement enabled

L7 DoS Mitigation enabled

Kubernetes Ingress Controller
Security Controls

Security Controls:
WAF signatures disabled

Threat Campaigns enabled
Bot Mitigation enabled

L7 DoS Mitigation enabled

https://github.com/apcj-f5/nginx-waf-
templates/tree/master/examples/api%20gateway%20protection

https://github.com/apcj-f5/nginx-waf-
templates/tree/master/examples/kubernetes%20ingress%20controller%20

protection

https://github.com/apcj-f5/nginx-waf-templates/tree/master/examples/api%20gateway%20protection
https://github.com/apcj-f5/nginx-waf-templates/tree/master/examples/kubernetes%20ingress%20controller%20protection

| ©2021 F511

Example – ensuring effectiveness of WAF policy

WAF policy pushed

Functional application testing

DAST post-release

https://gitlab.com/shainsingh/hapi-fhir

https://gitlab.com/shainsingh/hapi-fhir

“Marking your Homework”

| ©2021 F513

Compliance as Code

Automating Security Validation Using InSpec

Processing InSpec Results

| ©2021 F514

Example – adding compliance to pipelines

More apps mean more security

| ©2021 F516

Average days between “HIGH” AND “CRITICAL” CVEs released

1.4

0.9

0.6

0.2
0.3

1.7

0.8

0.5
0.4

0.5

0.0

0.5

1.0

1.5

2.0

2014 2015 2016 2017 2018
High Critical

Protecting against Abuse of Functionality

9-12
HOURS

| ©2021 F517

Protecting against Abuse of Intent

Summarising it all

| ©2021 F519

Remember the “People” and “Process” portions of DevOps

Start small, then increment - DSOMM Level 1

Apply declarative WAF policies for use in pipelines

Intent is to have security across all apps, everywhere

A manual WAF policy in transparent mode may be less effective
than a declarative policy in blocking mode

Key
Takeaways

